

Oakland County New Stormwater Standards

Stakeholder Rollout Meeting

April 20, 2021

AGENDA

- County Update
- Welcome and Team Introductions
- Post-Construction Stormwater Ordinance Updates
 - Stormwater program objectives
 - Regulatory need for changes
 - Proposed updates to stormwater rules
 - Site development impacts
 - Operations & maintenance
 - Schedule and rollout

County Update

Anne Vaara

INTRODUCTIONS

- RSSCC Collaboration Team
 - Oakland County WRC
 - Macomb County Public Works
 - Wayne County ESD
 - Livingston County Drain Office
 - OHM Advisors
 - Environmental Engineers, Inc.
 - Drummond Carpenter
 - OHRC

Post Construction Stormwater Ordinance

Program Updates

GOALS OF STORMWATER PROGRAM

- Ensure consistent and straightforward standards that meet permit requirements
- Improved water quality, channel and infrastructure protection
- Promote volume reducing low impact development (LID) measures
- Ensure long-term operation and maintenance of stormwater systems
- Promote consistent stormwater reporting, tracking and mapping

NEED FOR STORMWATER MANAGEMENT

- √ 3,288 miles of freshwater coastline
- √ 11,000 inland lakes
- √75,000 miles of river
- ✓ 6,300,000 acres of wetlands

NEED FOR STORMWATER MANAGEMENT

Southeast Michigan Urbanization

INTENT OF STANDARDS UPDATE

- Comply with NPDES MS4 permit requirements
- Address new requirements of combined sewer system permits
- Ensure program is reflective of current conditions and technology
- Simple Rules
- Streamline review process
- Consistency between counties

REGIONAL STORMWATER STANDARDS COORDINATION COMMITTEE (RSSCC) GOALS

- Develop a set or clear, consistent implementable, enforceable rules
- RSSCC consists of stormwater experts across SE Michigan, both in the public and private sectors. These professionals know how the site plan design and review process works
- On-going collaboration to review standards and provide regional guidance

OAKLAND COUNTY (& RSSCC GOALS)

Balance economic realities with environmental protection

Rules should-

- Be implementable
- Meet or exceed the EGLE MS4 permit guidance for Channel Protection
- Address EGLE combined sewer system permit requirements
- Be consistent

OAKLAND COUNTY (& RSSCC GOALS)

Rules should-

- Protect public health, safety and welfare
- Encourage redevelopment
- Put all counties, municipalities, and developers on a level playing field
- Support economic realities
- Encourage efficient investment in water quality and flood control

COUNTY STORMWATER AUTHORITY

Direct Connections to:

- A designated County Drain (in or out of MS4 regulated area)
- Or through County parks or property
- A County combined sewer (encouraged)

NOT OCWRC JURISIDICTION:

- Local stormwater systems that are not a direct connection to a County-owned or operated system
- **Road Commission of Oakland County**

WHERE DO RULES APPLY?

- All development and redevelopment projects with construction activity greater than or equal to 1-acre
- Some local jurisdictions may choose a lower threshold for development size

KEY STORMWATER RULE COMPONENTS

Water Quality Control

- 1.0-inch storm
- Reduce TSS by 80% or limit concentration to 80 mg/L

Channel Protection Volume Control

 Infiltrate site runoff from the <u>1.3-inch</u> storm

Rate Control

- Channel Protection:
 1.9-inch storm,
 extended detention
 (48-hours)
- Flood Control:

 100-year storm;
 variable release rate
 and storage curve

KEY NEW RULES

CPVC

1.3 inches

Applies to all regulated sites to the Maximum Extent Practicable (MEP)

Alternative approach to 2-yr / 24-hr volume control in EGLE permit guidance document

CPRC

1.9 inches

Applies to all regulated sites; also serves as an alternative method to address volume control

48-hour extended detention for runoff volume from a 1.9-inch rain event

CPVC = Channel Protection Volume Control
CPRC = Channel Protection Rate Control

KEY NEW RULES - CPVC

Exceptions

- Soil infiltration rate is less than 0.24 inches/hour
- Prevailing groundwater is within 2 vertical feet of the bottom of infiltration BMP
- Contaminated soils on site (i.e. 'hot spots')

When CPVC cannot be met, CPRC serves as an alternative method

ADVANTAGES OF CPVC STANDARD

- Applying 1.3-inch infiltration standard to redevelopment provides a major benefit
 - Annual runoff volume reduced by up to 90%
 - Reduces flashiness in receiving streams
- Standardization across all developments; increases likelihood of widespread adoption
- Allowance for underdrain in tighter soils makes infiltration BMPs more attractive to designers
- Simplified calculations reduce design barriers and encourage proliferation of infiltration BMPs

KEY NEW RULES - CPRC

What is it for?

- Addresses peak flow control for the 2-yr / 24-hr storm; discharge over a 48-hour period (a.k.a. extended detention)
- O Why 1.9 inches?
 - 2-yr/24-hr storm is ~2.35 inches
 - Even under pre-settlement conditions (Type A/B soils), runoff still occurs (~0.4-inch)
 - 1.9 inches ensures 2-yr/24-hr peak flow control on all sites
- Same standard for redevelopment sites;
 this rule will significantly reduce peak
 flows and address stream flashiness

SIMPLIFIED EQUATIONS

- Less reliance on the curve number method
- Newer equations guarantee BMP volumes are attained
- Makes site plan design and review more efficient

CPVC Volume (infiltration BMPs)

$$V_{CP-R} = 4,719 * C * A$$

CPRC Volume (part of detention pond)

$$V_{ED} = 6,897 * C * A$$

C = runoff coefficient A = regulated drainage area (acres)

Flood Control Rules

New Equations

CURRENT STANDARD

- Allowable peak flow limit of 0.20 cfs/acre
- Yrjanainen Method
- Old equations out of date based on changes to rainfall depths and intensities

(Orifice	Outlet)

Frequency Of Storm	Rainfall Intensity	Storage Time Equation	Storage Volume Equation
1 Year	72 T+25	$T=-25+$ $\sqrt{\frac{2700.0}{Qo}}$	Vs= $\frac{4320T}{T+25}$ - 40QoT
5 Year	145 T+25	T=-25+ \(\frac{5437.5}{Qo} \)	Vs= $\frac{8700T}{T+25}$ – 40QoT
10 Year	175 T+25	T=-25+ -\ \[\frac{6562.5}{Qo} \]	Vs= T+25 - 40QoT
25 Year	215 T+25	T=-25+ -\ \begin{align*} \frac{8062.5}{Qo} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Vs= T+25 - 40QoT
50 Year	245 T+25	T=-25+ \(\frac{9187.5}{Qo}\)	Vs= \frac{14700T}{T+25 - 40QoT}
100 Year	275 T+25	$T=-25+$ $\sqrt{\frac{10312.5}{Qo}}$	Vs= T+25 – 40QoT

PROPOSED STANDARDS

- Variable release rate (0.15 to 1.0 cfs/acre)
- Updated to reflect current climate data (NOAA Atlas 14)
- Credit infiltration (CPVC) volume against flood control volume (with ceiling at CPRC)
- Provide more realistic flow/storage requirements for smaller sites

VARIABLE RELEASE RATE

- Recognizes that runoff potential (cfs/acre) is much higher for smaller sites
- 0.15 cfs/acre may be too restrictive for smaller sites
- Set variable release rate
 - 0.15 cfs/acre for sites larger than 100 acres
 - Gradual increase to 1.0 cfs/acre sites 2 acres and smaller
- Allows for a shift in capital from storage to water quality BMPs

Rules still provide for more restrictive release rate if downstream conditions warrant

STORAGE CURVE

- Single equation to size detention pond
- Based on TR-55 curve
- Verified by hydrologic routing of dozens of hypothetical developments
- Will adapt to changing climate conditions
- Only variables needed:
 - Peak post-development pond inflow
 - Post-development runoff volume
 - Peak allowable discharge

y = 0.206 - 0.15ln(x)

Detention Pond Sizing Curve

Adapted from USDA-NRCS, Urban Hydrology for Small Watersheds, TR-55, June 1986 Revised Using HEC-HMS Routing on Various Site Development Scenarios

SIMPLIFIED EQUATIONS

- Fewer equations than current method
- Doesn't rely on curve numbers
- Makes site plan design and review more efficient

Allowable Peak Discharge Rate

$$Q_{VRR}$$
 (cfs/acre) = 1.1055 - 0.206 * In(A)

$$Q_{100P} = Q_{VRR} * A$$

Gradual increase to 1.0 cfs/acre for sites 2 acres and smaller

100-yr Storage Volume (Detention Pond)

$$V_{100D} = V_{100R} * [0.206 - 0.15 * ln(Q_{100P}/Q_{100IN})]$$

 V_{100D} = 100-yr storage volume

 V_{100R} = 100-yr developed runoff volume

 Q_{100P} = 100-yr Allowable peak discharge

 Q_{100IN} = 100-year peak pond inflow

Site Plan Examples

Real world scenarios

EXAMPLE 1- REDEVELOPMENT

Site Information

- 22-acre parcel
- 1.85 acres of redevelopment
 - Green space converted into a parking lot
- Runoff Coefficient 0.74

EXAMPLE 1 – REDEVELOPMENT

EXAMPLE 1 – REDEVELOPMENT

Proposed OCWRC Standards

Infiltration BMPs (1.3-inch event) 6,460 cubic feet

CPRC Volume (1.9-inch event) 9,500 cubic feet

100-year detention (5.24-inch event) 11,500 cubic feet (1 cfs/acre)

100-year detention provided:

11,500 cubic feet (calculated) CREDIT 6,460 cubic feet (bioretention) Net volume = 6,470 cubic feet

CPRC Volume (1.9-inch event): 9,500 cubic feet

EXAMPLE 1 – REDEVELOPMENT SUMMARY

EXAMPLE 2 – COMMERCIAL BUILDING

Site Information

- 10.32-acre site
- New Development
- Runoff Coefficient 0.59

Flood Control

Forebay

EXAMPLE 2 – COMMERCIAL BUILDING

Existing Local Standards:

Forebay Volume (WQ) 13,630 cf

10-year detention: 56,650 cubic feet¹

Allowable release rate 0.2 cfs/acre

¹ (Oakland County Design Method)

Flood Control

Forebay

EXAMPLE 2 – COMMERCIAL BUILDING

Proposed OCWRC Standards:

Infiltration BMPs (1.3-inch event) 28,700 cf

CPRC Volume (1.9-inch event) 42,000 cf

100-year detention (5.24-inch event) 54,000 cf (0.62 cfs/acre)

100-year detention provided:

54,000 cubic feet (calculated) CREDIT 28,700 cubic feet (bioretention) Net volume = 25,660 cubic feet

CPRC Volume (1.9-inch event): 42,000 cubic feet

VOLUME COMPARISON

Example 2 – Commercial Building

Operations & Maintenance

Long-term Goals

O&M PURPOSE

Maintaining stormwater systems is critical for ensuring they meet ongoing water quality and flood control needs. Perpetual maintenance and associated recordkeeping are the responsibility of the property owner.

O&M REQUIREMENTS

- Fully executed Stormwater Management O&M Agreement
 - Legal description & easements
 - Stormwater system description and map
 - Memorandum of stormwater management O&M agreement
 - Stormwater O&M plan
 - GIS data submittal for tracking

Next Steps

NEXT STEPS

- Present new rules to County Drain Board
- Present to Oakland County Board of Commissioners
- New rules effective: end of May
- Provide Engineering Standards to Stakeholders
 - Section I posted on website by end of week
 - Design profiles posted on website by end of week
 - Section II, Section III and Appendices posted by end of May
- Facilitate future stakeholder meeting(s)

Open Discussions & Questions

Thank You!

Site Information-New Development

- 1.5-acre site
- Runoff Coefficient 0.76

Existing Local Standards:

100-year stormwater detention:

10,014 cubic feet¹

Allowable release Rate *0.2 cfs/acre*

¹ (Oakland County Design Method)

Proposed OCWRC Standards:

Infiltration BMPs (1.3-inch event) 5,280 cubic feet PROVIDED 3,350 cf

CPRC Volume (1.9-inch event) 7,860 cubic feet

100-year stormwater detention: 9,330 cubic feet (1 cfs/acre)

*This site would need a waiver as they met the infiltration criteria to the Maximum Extent Practicable (MEP)

<u>Actual 100-year detention</u> provided:

9,220 cubic feet (calculated) CREDIT 3,350 cubic feet (bioretention/pervious pavers) Net volume = 4,970 cubic feet

CPRC Volume (1.9 inch rain): **7,860 cubic feet**

*This site would need a waiver as they met the infiltration criteria to the Maximum Extent Practicable (MEP)

